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The problem of the heat propagation and sublimation of the outer
surface for a plate of finite thickness is considered in the case of an
arbitrary dependence of external heat flow on time. The solutions ob-
tained make it possible to determine the total sublimation time or

the thickness of the sublimed layer, the temperature distribution in the
first layer and the mean temperature of the second layer as a function
of time.

In [1] we examined the problem of the heating and
sublimation of a semiinfinite rod for an arbitrary de-
pendence of the heat flow on time. Now let the length
of the rod be short enough so that the effect of the condi- |
tions at the upper end, not exposed to the action of the
external heat flow, cannot be neglected. We assume that
the rod in question is in close contact with another rod
made of a material with different thermophysical char-
acteristics. The sides of both rods are thermally in-
sulated, and, moreover, the second rod also has ther-

mal insulation on the end face turned toward free space.

Thus the problem of heat propagation in the system re-
duces to solving the one-dimensional heat conduction
equation. The problem is equivalent to the problem of
heating (and sublimation) of a two-layer plate infinite
in two directions and exposed fo the action of a time-
varying heat flow distributed over one of its surfaces
(Fig. 1).

Then for the two layers we have the heat conduction
equations

For i = 1 we have £ = xy = 6;, and similarly for i =
=2, 6 = %= §; + 0.

The boundary conditions are

at Xy = £

T, (¢, ¢ =T, = const,

aT, .
q(t)+}\41 1 —'YIEE=0, (2)
1
and at x; = 0
oT aT,
Ti@, ) =To(bss ), by —L- =14y =
6x1 axl

The boundary condition at x; = §; + 6, will be con-
sidered below. The initial conditions are determined
from the solution of the problem for a semiinfinite rod
[1]. Thus, we have the function g(x;) and the constants
£(0) and £(0):

at 0 <8, Ti(x, 0) =g(x),
£(0) =&, Ty(x, 0)=T,=const. (3)

In the general case there will also be some tem-
perature distribution other than that indicated in (3)
in the second rod. However, we will assume that at
the initial instant the femperature of that rod is con-
stant. This corresponds to assuming the presence of
a heat-assimilating layer [1]. Then zero time will
coincide with the moment at which the thermal front
reaches the boundary between the two layers. Further-
more, it is assumed that sublimation on the side of the
rod exposed to the heat flow begins before the thermal
front reaches the layer boundary.

It follows that the function g(x;) must satisfy the con-
ditions

g0 =T, g)="T,.

A similar problem for a constant heat flux was con-
sidered in [2], where it was assumed that a solid ho-
mogeneous rod is subjected to heating and melting at
one end. The temperature profiles in the solid and
liquid phases are given in the form of quadratic parab-
olas with respect to the coordinate x4. It should be
noted that if these temperature profiles are introduced
in the same way as in [2], erroneous results may be
obtained. In fact, under the above-mentioned conditions
the requirements of the problem are satisfied by the
segments of parabolas shown in Fig. 2. Obviously, the
picture presented in Fig., 2 is physically quite unreal,
but in [2] no limitations are imposed on the functions
Ti(xy, t) that might exclude the possibility of such a
situation.

We shall assume that the thermal conductivity of
the material of the second rod considerably exceeds
that of the first. Then we may approximately consider
that the temperature of the second rod does not depend
on the coordinate x; and varies only with time. In this
case the boundary conditions at the junction of the rods
take the form:

at x, = 3§,
oT, dT,
Tt 0=T7,0), & L=cvs —> . (4
dx, dt

By introducing the new coordinate x = x; ~ £, tied to
the moving sublimation front, we can write the heat
conduction equation for the first rod in the following

form:
T, . 0Ty o7,
a 3 — =0. 5
"o T oy ot ()

The boundary conditions are

at x=0
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ar. .
70, =T, qlf)y+ M ax‘ —nEE=0;

at x=108,—¢

aT ar '
L—avs, S @)

TG —8 =T — M ”

The initial conditions do not change. We reduire
the satisfaction of Eq. (5) in the mean for the layer
03 — ¢, for which purpose we integrate it with respect
to x from x =0 to x = 3§y — £. Using boundary con-
ditions (6), we obtain the heat balance equation for
a two-layer wall:

. dr,

n3, S L (UR

ik U R = . 7
dt + I : dt av: )

Here, we have introduced the notation

Ji=E 4T, 1=10,¥,00/0 .1,

o(1)
0(t) = , T, (x, t)dx, (8)
a

where 6(t) = 6; — £(t) is the thickness of the remaining
layer of material. Moreover, it is assumed that £(0) =
= 0. A second equation relating the unknowns Ty(t) and
£(t) must follow from the boundary conditions.

We note that Eq. (7) is integrated in the finite form

4

B(t) = j 9O g O (T, —T) 8 —8). (9)
Y, 41 5

In accordance with our assumption concerning the ther
mal conductivities of the rods we will further assume
that at the boundary between the layers the condition

at x=3§8()
aTy
=0 10
o (10)

is satisfied. Inthis case the presence of a secondrodis
taken into account only inthe heat balance equation (9).

As in the case of a semiinfinite rod {1] we take the
temperature profile for 0 =x = §(t) in the form of a
quadratic parabola. We do not risk obtaining a picture
similar to that shown in Fig. 2, since by condition
(10) we locate the unigue minimum of the curve T yx,t)
(the vertex of the parabola) at the boundary of the re-
gion considered x = 6(t). Thus,

Ty (%, H=To® + T, —To(l—xA@OF  (11)
Then §t) = (T, + 2T3)0/3, and Eq. (9) becomes
? .
9() o L
)= ——-————dt'—'— [nsl(Tz_'Tu) [
&0 5‘ Y.y gy
+ 3(8) (T, +2T 38— 8, (T, -+ 2T,)/3l- (12)

Equation (12) relates to two unknowns §(t) and Tyt). In
order to obtain a second equation in these quantities
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we employ the condition at the subliming surface (6),
whence after substitution of (11) we have

) 3 dd
T,0=T. — E &5
=T, o, (q+vl dt) (13)

} &Y, Csl,

— | ATy a7

1
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Fig. 1. Schematic represen-
tation of the problem.

By means of this relation we eliminate the quantity
Ty(t) from (12):

d_5 o g4t i 37‘;1 1 Sk
dt vwE v, 6+3n8/2 E

X((Bn—l)Tr——(Sn LT, +

+ 3‘:1 (1—5 90) dt))x

T Yad1 6

-1
x(ﬁz -+ 3n616/2> .

AY

(14)

From Eq. (14) we can easily determine the total sub-
limation time for the first rod tg.. For this purpose we
must set 0(tgp) = 0; then

iy

Cy i 1 / 2
= — — e | T~ n+ = . (15
Y [(” 3) o= (s 3)T“J (19

We will first consider the case of constant heat flux
q = const. We write Eqg. (14) in dimensionless form,
introducing the notation

§=3 (@) =66y
-t_= t/tfr y p= 2A‘1’Y1 szf /3C1q2',
Jest=E+ (T, —To), k=E/c,(T,—T,).

Some of these guantities were used in [1j,
Thus, we obtain

- — as I
6<a+b.«,)—&%:bla(6+ba)+

+ b,8 + by (b — bsd) + by, (16)
where

boo_ L (kTG

! 3 k(¥ Em)
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b, = — L (_ki_l_Y—
2T\ T Em ) s
by = — by/3k; by = 3k -1-2;, by = - 3kb,;

b =3n/2; by = —nbyk; Ty =t Ip.

,

5, %

Fig. 2. Possible temperature

in a two-layer wall when given

by segments of parabolas:

1)thermally insulated surface

in the section x; = 6; + 0,3

2) constant temperature at the
surface x; = §; + 8,

Here, the parameter m characterizes the time T of
heating and sublimation of the first rod up to arrival of
the thermal front at the boundary between the layers
and, in accordance with [1], is found from the equation

§(t)=(1 -+ km)§, .

In deriving Eq, (16) it was assumed that at the
moment of arrival of the thermal front at the boundary
between the layers the thickness of the heat-assimilat-
ing layer [1] and the thickness of the first layer (length
of rod exposed to the external heat flux) coincide. The
initial condition for Eq. (16) is 6(0) = 1. We will find
the solution in the form of a power series:

SO =1+ YV e# 0<i<l. (17)

Substituting (17) in Eq. (16) and equating the coeffi~
cients of like powers of the variable t on the left and
right sides, we obtain

& = by + (b, + byby - b/ (14 be);
5 =0.5[c; (2+ bg) (b — ¢) + bycy — bebs)/(1 + bg):

i—2
1 r
€; = ———— b | (24 bg) ;- CiCpmjmy | —
i(l-l-be){ll,(+ 6) € 1+]§ i 1.1]
i—1 'r i—j—1
b= 3 jo| @ b0y B ]|
j=1 s=1

i=3 4, ... (18)

The question of the conditions necessary and suffi-
cient to establish the radius of convergence of series
(17) is still not clear. The fact is that the coefficients
of the series depend on each other in a complicated
way: each successive coefficient is expressed in terms
of all the preceding ones.
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By direct calculation it is easy to establish that at
small values of the parameter n (roughly n € 1) the
radius of convergence of series (17) is close to unity.
Comparison of the results of calculating 6(t) from (17)
with the data obtained by solving Eq. (16) numeri-
cally on a computer indicates that acceptable accuracy
can be achieved by keeping the first 3—5 terms of the
series. '

As n increases, the radius of convergence decreases
and at n = 6.5 (maximum value of n considered) is ap-
proximately 0.4—0.45. Calculations were made for k =
= 1.7565, m = 1. From Eq. (15) on going over to di-
mensionless parameters with m = 1 we obtain for tg,.
the expression

t = (3n -3k + 2k + 1), (19)

The results of calculating B(E) for a series of values
of the parameter n are presented in Fig. 3a. Moreover,
the same figure shows the results of a numerical solu-
tion of the starting system of equations on a computer.
At small values of n the results of calculating 6(t) by
different methods are in quite good agreement.

Now, solving Eq. (12) for the temperature of the
second layer Tyt) and going over to dimensionless
quantities, we have

T,()—Ty _
I, —T,

i ] - —
Y 130 (b5t — b, (1—6 (D)1 (20)

The temperature distribution in the first layer is
determined from expression (11), where the thickness
of the layer &(t) is calculated from (17).

Thus, for g = const the problem is completely
solved. In Fig. 3b we present the results of a calcula-
tion of (Ty — Ty)/(Ty — Ty) as a function of dimension-
less time. The calculations were made both by using
the approximate solution obtained above and by inte-
grating the starting system of equations (1) and (2) by
the method of finite differences on a computer, Itis clear
that the approximate calculation of the temperature of
the second layer Ty(t) correctly reflects the qualitative
picture of the heating process. Relatively large devia-
tions from the numerical solution are observed on the
initial interval. This is attributable to the fact that at
the outset the approximate representation of the heat-
ing process in the form of a finite heat-assimilating
layer has a considerable effect. This effect is more
strongly manifested at small values of n.

Since using the solution of Eq. (16) in form (17) is
rather complicated owing to the clumsiness of expres-
sions (18) for the series coefficients, it is worthwhile
to consider the following approximation of & = §(t):

BH=(1-7, (21)
where
B=Ely /3.

Taking the quantity 8(%) in this form ensures that the
initial and final values of the unknown function coincide
with 6(0) = 1, 8(1) = 0 and the initial value of the rate
of displacement of the sublimation front with d&/dt =
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Fig. 3. Comparison of the results of an approximate calculation of
the values of () and (T, — Ty)/(T, — Tg) at g = const and the data

of a numerical solution: 1) approximate solution; 2) numerical so-
lution of Eq. (16); 3) numerical solution of the starting system of
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Fig. 4. Thickness of first layer and
temperature of second layer as a
function of time for a variable heat

equations.
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= ‘g:o, and also gives satisfaction of the condition vdf_< .
< 0 which follows from the physical picture of the
process. Using the expression obtained in {1] for £ =
= é(m) and going over to dimensionless parameters, it
is easy to show that

~ k31 20m4+m—=F
6——_&tlfl' 2
» 3 (1 4 km)

At m =1 we obtain g = tg,,/3. By a direct simple calcu-
lation it can be established that expression (21) quite
accurately approximates the real relation at small
values of the parameter n. It may be assumed that this
holds roughly up to n = 1.5—2. At larger n the proposed
formula gives only a qualitative picture of the event.
We will now consider the case of a variable heat
flux at the boundary q = g(t). We represent this func-
tion in the form

g{t) =g, + q. (1), (22)

where the subscripts denote the heat flow to the surface
of the body at the moment of arrival of the thermal
front at the boundary between the two media (t = 0) and
the subsequent deviations of the heat flux from the in-
dicated value.

We shall find the solution of Eq. (14) for q(t) from
(22) in the form of a sum

8(6) = 8,(t) + 8,1

The first term on the right side of this equation is
the solution of Eq. (14) at constant heat flux q = qq,
, the second, the deviation of the solution from the
. steady-state value for an arbitrary heat flux.
We assume that | 6xt) | < 04t). Then, expanding the
expressions
l 1
and ,
1+ 8, (£)/8: (1) L 85(8)/(81 (2) + be)

in series as infinitely decreasing progressions and
restricting ourselves to terms containing the denomi-
nators of the progressions in powers not higher than
the first, after going over to dimensionless parameters

we have the equation
df (fydt = — S, (O f () + S. (9, (23)

where
by (bs — b, + by

S, () =(25+ b L -
1(2) = (28 + be) &0 1 b
_ 7
S S ke o gﬁdt—;
(8 + by)? 8% (8 -+ by)? ;
7
- b.b. -
Sp{t)y =byg — =—=22 dt;
2 {f) 1q 3 (6 + by) 0 q

7= g, (00 8= 8, ()8, F(I) =23,(t)/5,

As before, the total sublimation time of the layer &,
is given by Eq. (15), and instead of q = const we
everywhere introduce the quantity qq.
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By definition f{0) = 0. Then the solution of Eq. (23)
is the function

1D =ew [~ S,047) { 5,0 x
0 0

(24)

X exp [ S, (@ d?] df.

Py o]

Now, using the relation between £(t) and o6(t), it is
easy to determine the time dependence of the sublimed
layer and, using expression (12), find the temperature
of the second layer (rod):

LO—T, _
L—T,

L1
2 be+8 ()

psfa+adi—ma—5@ﬂ. (25)
0

The temperature distribution along the length of the
first rod is approximately described by relation (11).

Thus, the problem of the sublimation and heating
of a two-layer rod (or plate) with an arbitrary heat
flow at the boundary has been approximately solved.
The solution is presented in the form of quadratures
(24), (25).

It should be noted that under certain conditions
complete sublimation of the first rod may not be
achieved. This may happen if the heat flow to the body
falls to zero before the rod in question has evaporated.
In this case instead of tgy it is necessary to use
another characteristic, for example, the parameter p.
This does not require any significant changes in the
solution.

Figure 4 presents the results of a calculation of the
sublimation and heating of a two-layer system (rods or
plates) for a variable heat flow at the boundary. The
calculations were made for k = 1.7565, n=0 andn =
= 0.5. In this case the quantity 0t) was calculated
using approximation (21). For comparison the same
figure presents the results of a calculation of the thick-
ness of the subliming layer for a semiinfinite rod ob-
tained by numerical solution of the corresponding sys-
tem of equations [1] on a computer. It is clear that at
n ~ 0 the layer of material sublimes more rapidly in
the case of a rod of finite length. On the other hand,
even at n ~ 0.5 the effect of heat transfer to the second
layer is so great that total sublimation of the first rod
occurs much later than observed for the same amount
of sublimation of a semiinfinite rod.

The proposed approximate method of solving the
problem of heating and sublimation of a two-layer
plate (rod) may prove useful for- estimating purposes.

NOTATION

c is the specific heat of the material; v is the den-
sity of material; A is the thermal conductivity; e is the
thermal diffusivity of the material; E is the latent heat
of sublimation of the material; é is the thickness of the
layer of material (length of rod); t is the time; x; is
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the coordinate directed from outside surface into the
interior of the wall; §(t) is the coordinate of the sub-
limation front; £(t) = d£/dt is the velocity of the sub-
limation front; T(xj,t)is the temperature; qg(t) is the
amount of heat supplied to the unit surface area in a
unit time. The subscripts 1, 2 denote that the charac-
teristics correspond to the first and second layers
(rods), respectively.
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